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1. Introduction.-Most theorems of homotopy theory, in particular those con-
cerning homotopy and singular homology groups,' may be divided into two parts:
(a) a theorem on abstract complexes and maps; (b) a "translation" of this abstract
theorem into topological language by means of a singular functor (simplicial or
cubical).
Such an abstract theorem, however, concerns only complexes which are the singu-

lar complex of a topological space. In this note it will be indicated how a ho-
motopy theory may be developed for all abstract cubical complexes which satisfy only
a certain extension axiom; homotopy groups will be introduced for all such com-
plexes.

2. Cubical Complexes.2-The symbols e and co will always denote 0 or 1 even
if indices are attached to them. A cubical complex K is a possibly void collection
of elements u (cubes) to each of which is attached a dimension n > 0 such that for
each n-cube o- and integer i with 1 < i < n there are defined in K two (n - 1)-
cubes 0W and ali (faces) and for each n-cube a and integer j with 1 < j .fn + 1
there is defined an (n + 1)-cube qqJ of K (degenerate), where the operators o0, 1i and
v) satisfy the following identities (we recall that e = 0, 1 and w = 0, 1):

f1WC-1 = Wjei i < j,
77 7-17 '77,i <j
7 it = Eilj-l i < j, (1)

- identity, i = j
-Ei-'17)2 i >j,

A subcomplex M of K is a subcollection of K closed under the operators Ei and v.
A cubical map ff: K -- L is a dimension-preserving function which commutes with
the operators e andnJ. Let e denote the resulting category.
A tensor product K 0 L can be defined which has a (p + q)-cube a 0 r for every

p-cube oa of K and q-cube r of L, identifying the cubes oqP+1 0 T and a 0 r71. The
operators e1 and nJ are defined by

(o C0 r)E' = oE' 0 T, (a r)77 = an710, i, < pi
(oa' T)e = a- reaP (o 0 r)nJ = 0-7Tn70 p. ij >p.

Let I denote the cubical complex with a 1-cube v and two 0-cubes of = AE1 as
the only nondegenerate cubes; then two cubical maps fb: K -0 L are called homo-
topic if there exists a cubical map fI: I 0 K -* L (homotopy) such that f'(te 0 A-) =
fLa for every cube a ofK (notation fI: fo - f, or fo - fr). This homotopy relation is
reflexive but is not an equivalence relation.
A cubical complex K is called connected if for every two 0-cubes a,, of K there

exists a 1-cube a ofK such that a-e1 = o-V.
Let as be the category of chain complexes. Then, as usual,' a functor FN:

e -b can be defined as the quotient functor FN = F/ED, where F is obtained
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by regarding all cubes of a cubical complex as generators of a chain complex and
FD by considering the subcomplex generated by the degenerate cubes. The
functor FN preserves tensor products. As all (co-)homological notions have
originally been defined on the category 69, it follows that by composition with the
functor FN these notions also supply to the category e, and, as FN preserves ho-
motopies, the resulting (co-)homology theories satisfy the homotopy axiom.

3. Notational Conventions.-Consider the symbols

[0l',. . '. O] (2), [Tll. .p 2
Lu,'.... 0inJ1T..,T..? (2')
00., | (3) T',. T p (3')

1~ ,I00 TOI, TOI .
[olI YX1IY S o

[Ol
n (4)y

T XIIol.jFol (41)

where ae' and T,, are (n - 1)-cubes of a cubical complex K, and p is an integer with
1 < p < n.
Symbol (2) will denote the existence of an n-cube a of K such that aet = ei for

all el. Then a is called a solvent of (2), and (2) is called the boundary of a. Symbol
(3) will denote an arbitrary but fixed solvent of (2). Symbol (4) is called an equa-
tion in an (n - l)-cube xi' of K and will mean that cr.wJ- = a0Jei for i < j and
e I, WJ # 11. It is called solvable if there exists an (n - 1)-cube u,' of K (a solution)
such that (2) holds or, equivalently, if there exists an n-cube e of K (a solvent of
(4)) such that e i -a for el $ 1', for then a1l is a solution. The definition of an
equation in an (n - 1)-cube xoI ofK is similar.
Symbol (2') will mean that (2) holds, where o¢i = Tai for i < p and off = To'l7 =e-

Tfl1E'i for i > p. An n-cube 0r of K is called a solvent of (2') if it is a solvent of
(2). We call (2') an (abbreviated) boundary of a. An arbitrary but fixed solvent
of (2') will also be denoted by (3'). If p = 1, then we often write [Tol, Tll] and

| Tol, Tll instead of (2') and (3'). Likewise, the symbol (4'), an (abbreviated) equa-
tion, will mean that (4) holds, where r =ITI for i < p, el $ 11 and a.' TO lE1
for i > p. It is called solvable if equation (4) is so or, equivalently, if there exists
an (n - 1)-cube Til of K (solution) such that (2') holds. The usefulness of these
abbreviations may be seen from the following theorem.
THEOREM 1. Let Tel (i = 1, . . ., p and el # 11) be 2p - 1 (n - 1)-cubes of

K c e such that

TE1Wa-1 = TJE?, i < j,

Tiis a solvent of [re . .l fo:-I1

Then (4') holds. If, in addition, this abbreviated equation (4') is solvable, then every
solution has

TO 111-1 To 1-111-1, T1+111, . .. ,T(P

as an abbreviated boundary, i.e. (5) holds.
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4. The Extension Axiom.-We shall need the following properties of a cubical
complex K:

a) Property E (n, e, i): Every equation in an (n - 1)-cube XE? of K is solvable.
b) Property HE (homotopy extension): Let fo: K L be a cubical map, let M be

a subcomplex of K, and let gr: go f gi, where go = fo M. Then there exists a
homotopyfi: fo -fi such thatfI| I M = g1.

The strength of these properties may be indicated by the following theorems.
THEOREM 2. A cubical complex K has the property HE if and only if it has the

property E (n, 1, 1) for all n.
THEOREM 3. If a cubical complex K has the property E (n, 1, 1) for all n, then the

homotopy relation - is an equivalence relation on the set of the cubical maps L -I K.
THEOREM 4. If a cubical complex K has the property E (n, 0, n) for all n, then

for every two q-cubes u, ofK there exists a (q + 1)-cube a such that ace = -G.
We now define an E-complex as a cubical complex K which satisfies the following

axiom:

Extension axiom: K has the properties E (n, 1, 1) and E (n, 0, n) for all n.

The full subcategory of e generated by the E-complexes will be denoted by CE.
A map of CE is called an E-map.
THEOREM 5. An E-complex K has the property E (n, e, i) for all values of n, e and

i, i.e., every equation ofK is solvable.
5. The Solutions of an Equation.-Two n-cubes G, of a cubical complex K are

called compatible4 if their faces coincide, i.e., if uoef = oele for all em. They are
called compatible and homotopic4 if [aof, oer], i.e., if there exists an (n + 1)-cube a

of K such that ael = o-E and aoe = croflY for i> 1 (notation o-o - a). This rela-
tion --' on the cubes ofK is reflexive but need not be an equivalence relation. How-
ever, the following theorem holds.
THEOREM 6. Let K be an E-complex. Then
a) The relation -- is an equivalence relation on the cubes of K,
b) The set of the solutions of an equation ofK is exactly an equivalence class of cubes

of K, and
c) This class depends only on the equivalence classes of the cubes o,' of the equation.
The importance of this theorem lies in the fact that now symbols (2), (2'), (4), and

(4') may be considered as the definition of a kind of multimultiplication for the
equivalence classes of n-cubes of an E-complex and that therefore these symbols
still have a clear meaning if some of the entries are classes of n-cubes.

6. The Homotopy Groups.-Let yt be an (n-1)-cube of an E-complex K. Ac-
cording to Theorem 6 the relation divides the solvents of [,6, ,6] into classes
a, b, c, etc. Let 0 denote the class which contains Art. We now define the sum
a + b of two classes by the condition

[a + b) b](6
It follows from Theorem 6 that the sum a + b is uniquely determined for every
aandb.
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THEOREM 7. The classes of the solvents of [1t, jP] form a group ir.(K; VI) under
the above definition of sum, the n-th homotopy group of K rel. the base-(n - 1)-cube &.

Proof: Let a, 13, My, a + 13, etc., be cubes of the classes a, b, c, a + b, etc. It
follows from Theorem 5 that both equations

[so',Gel] (7) [t l] (7%)
are solvable, and therefore, in view of Theorem 6, the same applies to the equations
x + b = a and b + y = a. It now remains to prove that the associative law holds.
As aq1e1 = a, at,1 2 = acEl'I = 46't1, and atq1Et = aMYr, it follows that, for a = 13,
4,6ql is a solution of (7') (i.e. 0 is a right zero). Now application of Theorem 1 to

[ a, )t'77' (26a,1 11'' ,# 1 k I -
+ a

, 01 417,(X24 l alyields 10a
XI a+f3,111a+ #, L(a+-a )+ ,13+

L X (a+ )+y, 7 1 + o7, 7 _

i.e., a + (b + c) = (a + b) + c, Q.E.D.
It immediately follows from the definitions that an E-map f: K -* L induces

homomorphisms f*: 7rn(K; i1) 7rn(L; f4l) for all n. The isomorphisms of the
homotopy groups of a topological space induced by a path generalize to isomor-
phisms y*: 7rn(K; 71') -O 7rn(K; y01) induced by an n-cube oy of K by the condition

E 7al (8)
[, a

where a e irn(K; 7l1). Application of Theorem 4 then yields
THEOREM 8. Let A, x be (n-1)-cubes of a connected E-complex K. Then there

exists a not necessarily unique isomorphism v.(K; O) - 7rn(K; x).
The following can also be proved:
THEOREM 9. 7rn(K; 4') is Abelian forn> 1.
For a set {a} of 2n + 2 n-cubes a- (i = 1, ... , n + 1) of an E-complexKwith

ffel~- = a(A),/e for i < j, let aol denote a solution of the equation in an n-cube xol
of K involving the a-.1 except vol. We now define an element c' { a- } e 7r (K; ao01)
by the condition

[7oo,c'{}1a~o', Col{flJ (9)
_aol (70olln1

Using this and similar notions, the homotopy addition theorems5 can be formulated
and proved.

7. Duality.-Let D: e3-*a e be the functor such that the cubical complex DK
contains exactly one n-cube a* for every n-cube a- of K with operators a*01 =

(asln+l-i)*, a*li = (vOn+l-i)*, and an*J = (,n+2-J)*, and that for every cubical
map f: K -> L the map Df is determined by (Df)a* = (fa) *. Then, clearly,
DD = E, the identity functor of e. It follows easily that a cubical complex K has
the property E (n, e, i) if and only if DK has the property E (n, 1 t ., n + 1 - i).
Consequently, the extension axiom is self-dual, i.e., K is an E-complex if and only
ifDK is so.

VOL. 41. 1955 1095



1MATHEMA TICS: F. D. MURNAGHAN

Dualizing the homotopy relation, we call two cubical maps fE: K L aft-homo-
topic (fo fl) if Df1 - Dfo. In general, the relations . and 1 do not coincide.
However, we have
THEOREM 10. Both homnotopy relations coincide on C*,.
1 See, for example, Eilenberg and Mac Lane, Ann. Math., 51, 514-533, 1950, and Serre, Ann.

Math., 54, 425-505, 1951.
2 This is the cubical analogue of the complete semi-simplicial complexes of Eilenberg and Zilber,

Ann. Math., 51, 499-513, 1950.
3 Cf. Eilenberg and Mac Lane, Am. J. Math., 75, 189-199, 1953.
4Cf. Eilenberg and Zilber, op. cit.
Sze-tsen Hu, Ann. Math., 58, 108-122, 1953.
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We have pointed out' in a recent note in these PROCEEDINGS that all representa-
tions of Sn, the symmetric group on n symbols, are linear combinations with in-
tegral coefficients of appropriately symmetrized Kronecker powers of the irreduci-
ble representation P(n - 1, 1), of dimension n - 1, of Sn and have furnished these
linear combinations for the irreducible representations r(n - p, X2, . . *) of Sn in
the special cases p = 2, 3, 4. In an accompanying note2 we have given certain
rules which facilitate (and in important instances furnish) the analysis of the
Kronecker product of two irreducible representations of Sn into its irreducible
components. The problem of determining this analysis is closely related to that
of analyzing the various appropriately symmetrized powers of r(n - 1, 1), and the
object of the present note is to indicate this connection and to extend the rules
furnished in the note2 just referred to. We also furnish the analysis of the various
symmetrized powers r(n - 1, 1) 0 {/u}, (,) a partition of p, of r(n -1,1) in the
cases p = 5 and p = 6.
With each partition (X) = (X1, . . ., AR), Xi A . . . XSk, of n there is as-

sociated an irreducible representation F(X) of S,,, and, in the Kronecker product
r(X) X r(X') of two such irreducible representations, the passage from the partition
(X) to the associated partition (X*) of n acts like a change of sign of a factor in the
product of two real or complex numbers (the product of r(X') by r(X*) being the
associate of the product of r(x') by r(X)). On writing X = n - p, p = 0 ,1, ...,
n - 1, (X) appears as (n - p, (/t)), where (/.t) = (X2, . . , Xk) is a partition of p,
such that n - p ) X2, and so we may regard the various irreducible representations
of S,, as arranged in shells of varying depths, the number of representations in the
shell of depth p being the number of those partitions of p whose first element ( n -

p. We may select from any pair of associated representations of S5 either of the
two representations (the other being rejected as unessential), and we agree to
select the representation of lesser depth. The effect of this selection is to reduce
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